List
List Agents
agents.list(AgentListParams**kwargs) -> AgentListResponse
/v2/gen-ai/agents
To list all agents, send a GET request to /v2/gen-ai/agents.
Parameters
Only list agents that are deployed.
page: Optional[int]
Page number.
per_page: Optional[int]
Items per page.
Returns
List Agents
from gradient import Gradient
client = Gradient(
access_token="My Access Token",
)
agents = client.agents.list()
print(agents.agents)
{
"agents": [
{
"chatbot": {
"button_background_color": "example string",
"logo": "example string",
"name": "example name",
"primary_color": "example string",
"secondary_color": "example string",
"starting_message": "example string"
},
"chatbot_identifiers": [
{
"agent_chatbot_identifier": "123e4567-e89b-12d3-a456-426614174000"
}
],
"created_at": "2021-01-01T00:00:00Z",
"deployment": {
"created_at": "2023-01-01T00:00:00Z",
"name": "example name",
"status": "STATUS_UNKNOWN",
"updated_at": "2023-01-01T00:00:00Z",
"url": "example string",
"uuid": "123e4567-e89b-12d3-a456-426614174000",
"visibility": "VISIBILITY_UNKNOWN"
},
"description": "This is a chatbot that can help you with your questions.",
"if_case": "if talking about the weather use this route",
"instruction": "Hello, how can I help you?",
"k": 5,
"max_tokens": 100,
"model": {
"agreement": {
"description": "example string",
"name": "example name",
"url": "example string",
"uuid": "123e4567-e89b-12d3-a456-426614174000"
},
"created_at": "2023-01-01T00:00:00Z",
"inference_name": "example name",
"inference_version": "example string",
"is_foundational": true,
"metadata": {},
"name": "example name",
"parent_uuid": "123e4567-e89b-12d3-a456-426614174000",
"provider": "MODEL_PROVIDER_DIGITALOCEAN",
"updated_at": "2023-01-01T00:00:00Z",
"upload_complete": true,
"url": "example string",
"usecases": [
"MODEL_USECASE_AGENT",
"MODEL_USECASE_GUARDRAIL"
],
"uuid": "123e4567-e89b-12d3-a456-426614174000",
"version": {
"major": 123,
"minor": 123,
"patch": 123
}
},
"name": "My Agent",
"project_id": "12345678-1234-1234-1234-123456789012",
"provide_citations": true,
"region": "\"tor1\"",
"retrieval_method": "RETRIEVAL_METHOD_UNKNOWN",
"route_created_at": "2021-01-01T00:00:00Z",
"route_created_by": "12345678",
"route_name": "Route Name",
"route_uuid": "\"12345678-1234-1234-1234-123456789012\"",
"tags": [
"example string"
],
"temperature": 0.5,
"template": {
"created_at": "2023-01-01T00:00:00Z",
"description": "example string",
"guardrails": [
{
"priority": 123,
"uuid": "123e4567-e89b-12d3-a456-426614174000"
}
],
"instruction": "example string",
"k": 123,
"knowledge_bases": [
{
"added_to_agent_at": "2023-01-01T00:00:00Z",
"created_at": "2023-01-01T00:00:00Z",
"database_id": "123e4567-e89b-12d3-a456-426614174000",
"embedding_model_uuid": "123e4567-e89b-12d3-a456-426614174000",
"is_public": true,
"last_indexing_job": {
"completed_datasources": 123,
"created_at": "2023-01-01T00:00:00Z",
"data_source_uuids": [
"example string"
],
"finished_at": "2023-01-01T00:00:00Z",
"knowledge_base_uuid": "123e4567-e89b-12d3-a456-426614174000",
"phase": "BATCH_JOB_PHASE_UNKNOWN",
"started_at": "2023-01-01T00:00:00Z",
"status": "INDEX_JOB_STATUS_UNKNOWN",
"tokens": 123,
"total_datasources": 123,
"total_items_failed": "12345",
"total_items_indexed": "12345",
"total_items_skipped": "12345",
"updated_at": "2023-01-01T00:00:00Z",
"uuid": "123e4567-e89b-12d3-a456-426614174000"
},
"name": "example name",
"project_id": "123e4567-e89b-12d3-a456-426614174000",
"region": "example string",
"tags": [
"example string"
],
"updated_at": "2023-01-01T00:00:00Z",
"user_id": "user_id",
"uuid": "123e4567-e89b-12d3-a456-426614174000"
}
],
"long_description": "\"Enhance your customer service with an AI agent designed to provide consistent, helpful, and accurate support across multiple channels. This template creates an agent that can answer product questions, troubleshoot common issues, process simple requests, and maintain a friendly, on-brand voice throughout customer interactions. Reduce response times, handle routine inquiries efficiently, and ensure your customers feel heard and helped.\"",
"max_tokens": 123,
"model": {
"agreement": {
"description": "example string",
"name": "example name",
"url": "example string",
"uuid": "123e4567-e89b-12d3-a456-426614174000"
},
"created_at": "2023-01-01T00:00:00Z",
"inference_name": "example name",
"inference_version": "example string",
"is_foundational": true,
"metadata": {},
"name": "example name",
"parent_uuid": "123e4567-e89b-12d3-a456-426614174000",
"provider": "MODEL_PROVIDER_DIGITALOCEAN",
"updated_at": "2023-01-01T00:00:00Z",
"upload_complete": true,
"url": "example string",
"usecases": [
"MODEL_USECASE_AGENT",
"MODEL_USECASE_GUARDRAIL"
],
"uuid": "123e4567-e89b-12d3-a456-426614174000",
"version": {
"major": 123,
"minor": 123,
"patch": 123
}
},
"name": "example name",
"short_description": "\"This template has been designed with question-answer and conversational use cases in mind. It comes with validated agent instructions, fine-tuned model settings, and preconfigured guardrails defined for customer support-related use cases.\"",
"summary": "example string",
"tags": [
"example string"
],
"temperature": 123,
"template_type": "AGENT_TEMPLATE_TYPE_STANDARD",
"top_p": 123,
"updated_at": "2023-01-01T00:00:00Z",
"uuid": "123e4567-e89b-12d3-a456-426614174000"
},
"top_p": 0.9,
"updated_at": "2021-01-01T00:00:00Z",
"url": "https://example.com/agent",
"user_id": "12345678",
"uuid": "\"12345678-1234-1234-1234-123456789012\"",
"version_hash": "example string"
}
],
"links": {
"pages": {
"first": "example string",
"last": "example string",
"next": "example string",
"previous": "example string"
}
},
"meta": {
"page": 123,
"pages": 123,
"total": 123
}
}Returns Examples
{
"agents": [
{
"chatbot": {
"button_background_color": "example string",
"logo": "example string",
"name": "example name",
"primary_color": "example string",
"secondary_color": "example string",
"starting_message": "example string"
},
"chatbot_identifiers": [
{
"agent_chatbot_identifier": "123e4567-e89b-12d3-a456-426614174000"
}
],
"created_at": "2021-01-01T00:00:00Z",
"deployment": {
"created_at": "2023-01-01T00:00:00Z",
"name": "example name",
"status": "STATUS_UNKNOWN",
"updated_at": "2023-01-01T00:00:00Z",
"url": "example string",
"uuid": "123e4567-e89b-12d3-a456-426614174000",
"visibility": "VISIBILITY_UNKNOWN"
},
"description": "This is a chatbot that can help you with your questions.",
"if_case": "if talking about the weather use this route",
"instruction": "Hello, how can I help you?",
"k": 5,
"max_tokens": 100,
"model": {
"agreement": {
"description": "example string",
"name": "example name",
"url": "example string",
"uuid": "123e4567-e89b-12d3-a456-426614174000"
},
"created_at": "2023-01-01T00:00:00Z",
"inference_name": "example name",
"inference_version": "example string",
"is_foundational": true,
"metadata": {},
"name": "example name",
"parent_uuid": "123e4567-e89b-12d3-a456-426614174000",
"provider": "MODEL_PROVIDER_DIGITALOCEAN",
"updated_at": "2023-01-01T00:00:00Z",
"upload_complete": true,
"url": "example string",
"usecases": [
"MODEL_USECASE_AGENT",
"MODEL_USECASE_GUARDRAIL"
],
"uuid": "123e4567-e89b-12d3-a456-426614174000",
"version": {
"major": 123,
"minor": 123,
"patch": 123
}
},
"name": "My Agent",
"project_id": "12345678-1234-1234-1234-123456789012",
"provide_citations": true,
"region": "\"tor1\"",
"retrieval_method": "RETRIEVAL_METHOD_UNKNOWN",
"route_created_at": "2021-01-01T00:00:00Z",
"route_created_by": "12345678",
"route_name": "Route Name",
"route_uuid": "\"12345678-1234-1234-1234-123456789012\"",
"tags": [
"example string"
],
"temperature": 0.5,
"template": {
"created_at": "2023-01-01T00:00:00Z",
"description": "example string",
"guardrails": [
{
"priority": 123,
"uuid": "123e4567-e89b-12d3-a456-426614174000"
}
],
"instruction": "example string",
"k": 123,
"knowledge_bases": [
{
"added_to_agent_at": "2023-01-01T00:00:00Z",
"created_at": "2023-01-01T00:00:00Z",
"database_id": "123e4567-e89b-12d3-a456-426614174000",
"embedding_model_uuid": "123e4567-e89b-12d3-a456-426614174000",
"is_public": true,
"last_indexing_job": {
"completed_datasources": 123,
"created_at": "2023-01-01T00:00:00Z",
"data_source_uuids": [
"example string"
],
"finished_at": "2023-01-01T00:00:00Z",
"knowledge_base_uuid": "123e4567-e89b-12d3-a456-426614174000",
"phase": "BATCH_JOB_PHASE_UNKNOWN",
"started_at": "2023-01-01T00:00:00Z",
"status": "INDEX_JOB_STATUS_UNKNOWN",
"tokens": 123,
"total_datasources": 123,
"total_items_failed": "12345",
"total_items_indexed": "12345",
"total_items_skipped": "12345",
"updated_at": "2023-01-01T00:00:00Z",
"uuid": "123e4567-e89b-12d3-a456-426614174000"
},
"name": "example name",
"project_id": "123e4567-e89b-12d3-a456-426614174000",
"region": "example string",
"tags": [
"example string"
],
"updated_at": "2023-01-01T00:00:00Z",
"user_id": "user_id",
"uuid": "123e4567-e89b-12d3-a456-426614174000"
}
],
"long_description": "\"Enhance your customer service with an AI agent designed to provide consistent, helpful, and accurate support across multiple channels. This template creates an agent that can answer product questions, troubleshoot common issues, process simple requests, and maintain a friendly, on-brand voice throughout customer interactions. Reduce response times, handle routine inquiries efficiently, and ensure your customers feel heard and helped.\"",
"max_tokens": 123,
"model": {
"agreement": {
"description": "example string",
"name": "example name",
"url": "example string",
"uuid": "123e4567-e89b-12d3-a456-426614174000"
},
"created_at": "2023-01-01T00:00:00Z",
"inference_name": "example name",
"inference_version": "example string",
"is_foundational": true,
"metadata": {},
"name": "example name",
"parent_uuid": "123e4567-e89b-12d3-a456-426614174000",
"provider": "MODEL_PROVIDER_DIGITALOCEAN",
"updated_at": "2023-01-01T00:00:00Z",
"upload_complete": true,
"url": "example string",
"usecases": [
"MODEL_USECASE_AGENT",
"MODEL_USECASE_GUARDRAIL"
],
"uuid": "123e4567-e89b-12d3-a456-426614174000",
"version": {
"major": 123,
"minor": 123,
"patch": 123
}
},
"name": "example name",
"short_description": "\"This template has been designed with question-answer and conversational use cases in mind. It comes with validated agent instructions, fine-tuned model settings, and preconfigured guardrails defined for customer support-related use cases.\"",
"summary": "example string",
"tags": [
"example string"
],
"temperature": 123,
"template_type": "AGENT_TEMPLATE_TYPE_STANDARD",
"top_p": 123,
"updated_at": "2023-01-01T00:00:00Z",
"uuid": "123e4567-e89b-12d3-a456-426614174000"
},
"top_p": 0.9,
"updated_at": "2021-01-01T00:00:00Z",
"url": "https://example.com/agent",
"user_id": "12345678",
"uuid": "\"12345678-1234-1234-1234-123456789012\"",
"version_hash": "example string"
}
],
"links": {
"pages": {
"first": "example string",
"last": "example string",
"next": "example string",
"previous": "example string"
}
},
"meta": {
"page": 123,
"pages": 123,
"total": 123
}
}