## Update `gpu_droplets.autoscale.update(strautoscale_pool_id, AutoscaleUpdateParams**kwargs) -> AutoscaleUpdateResponse` **put** `/v2/droplets/autoscale/{autoscale_pool_id}` To update the configuration of an existing autoscale pool, send a PUT request to `/v2/droplets/autoscale/$AUTOSCALE_POOL_ID`. The request must contain a full representation of the autoscale pool including existing attributes. ### Parameters - **autoscale\_pool\_id:** `str` - **config:** `Config` The scaling configuration for an autoscale pool, which is how the pool scales up and down (either by resource utilization or static configuration). - `AutoscalePoolStaticConfigParam` - `AutoscalePoolDynamicConfigParam` - **droplet\_template:** `AutoscalePoolDropletTemplateParam` - **name:** `str` The human-readable name of the autoscale pool. This field cannot be updated ### Returns - `class AutoscaleUpdateResponse` - **autoscale\_pool:** `Optional[AutoscalePool]` ### Example ```python from do_gradientai import GradientAI client = GradientAI() autoscale = client.gpu_droplets.autoscale.update( autoscale_pool_id="0d3db13e-a604-4944-9827-7ec2642d32ac", config={ "target_number_instances": 2 }, droplet_template={ "name": "example.com", "region": "nyc3", "size": "c-2", "image": "ubuntu-20-04-x64", "ssh_keys": ["3b:16:e4:bf:8b:00:8b:b8:59:8c:a9:d3:f0:19:fa:45"], "backups": True, "ipv6": True, "monitoring": True, "tags": ["env:prod", "web"], "user_data": "#cloud-config\nruncmd:\n - touch /test.txt\n", "vpc_uuid": "760e09ef-dc84-11e8-981e-3cfdfeaae000", }, name="my-autoscale-pool", ) print(autoscale.autoscale_pool) ```